
and j to two other states. The time intervals and mass-transfer coefficients obtained on 
samples of the composites analogous to that corresponding to the tomogram in Fig. 1 are con- 
sidered. It follows from Fig. 3 that: assuming the best material has the leasttortuosity, 
the most acceptable is that in which the layers are characterized by the same properties 
with respect to moisture migration. In this case, e is a minimum, and depends only on the 
ratio Lx/Ly. With a purely diffusional process, Ly = 0, and hence g is not determined. In- 
crease in the difference between t~ leads to increase in ~. As shown by calculations, mois- 

0 and ture migration characterized by the tortuosity is determined basically by the times t i 
is practically independent of 8i. The results obtained may beextended to any number of 
layers. 

Thus, the tortuosity factor of pores has been estimated as a random parameter of mois- 
ture absorption in composites. In the present case, it characterizes the pore space of the 
material over its whole volume and may be used in mathematical models of moisture transfer. 

NOTATION 

n, number of layers in material; -0 tk, mean residence time in k-th state in Fig. 2, tak- 
ing no account of internal diffusion; L x, Ly, mass-transfer coefficients along x and y axes, 
respectively. 

i. 

2. 

3. 
4. 
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NONSTEADY TRANSFER AND DISPERSIONAL EFFECTS IN 

HETEROGENEOUS MEDIA 

Yu. A. Buevich and V. A. Ustinov UDC 536.242:532.546 

A single transport equation taking account of the dispersion of effective con- 
ductivities and interphase exchange due to relaxation effects, as well as the 
inhomogeneity of the corresponding fields, is obtained in Laplace transforms. 
The asymptotes of this equation are considered. 

1. The problem of adequate description of heat and mass transfer in heterogeneous and, 
in particular, granular media has been under intensive study for several decades now. Meth- 
ods of engineering calculation based on semiempirical models have been proposed, leading to 
completely satisfactory results in many situations; see the review [I], for example. How- 
ever, as yet there is no general theory indicating the regions of validity of these methods 
and models and extending them to processes in which nonsteady effects, sources, and sinks 
due to phase and chemical transformations and diverse nonlinear phenomena are of fundamental 
importance [2]. In practice, as before, the phenomenological model based on the concept of 
parallel transport in the two phases of a heterogeneous medium is most often used; this 
model leads to a system of two linear equations with constant coefficients [i, 3, 4] or to 
a single equivalent transport equation, which may be formally obtained from this system [5, 

6]. 

The applicability of these equations is limited to processes which are very close to 
steady state. Generalization to a situation which is very unsteady is difficult in that 

A. M. Gor'kii Ural State University, Sverdlovsk. Translated from Inzhenerno-Fiziches- 
kii Zhurnal, Vol. 59, No. 5, pp. 807-816, November, 1990. Original article submitted Sep- 
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1432 0022-0841/90/5905-1432512.50 �9 1991 Plenum Publishing Corporation 



several relaxation processes with comparable (generally speaking) relaxation times occur 
simultaneously in the system and dispersional phenomena associated both with transit through 
the heterogeneous medium and with transfer between its phases are present simultaneously 
[7]. The dispersion of the interphase flux was considered recently under the assumption 
that only relaxation of the temperature or concentration field within the particles of dis- 
perse phase in practically homogeneous conditions has the determining role [8, 9]. This 
leads directly to the explanation of a series of generally observed effects. Results of 
similar significance were obtained recently for polydisperse media, taking account of some 
nonlinear phenomena at the phase interface [i0, ii]. In all cases, nonsteady behavior of 
the phase-transfer coefficient leads to a nonlocal (in time) equivalent equation containing 
integral hereditary terms [7-11]. Analogous equations with a series of simplifying assump- 
tions were obtained earlier in filtration theory in cracked porous media, the mathematical 
formulation of which has much in common with that of the problem of heat and mass transfer 
[12-15]. In the present work, for the example of heat transfer in a granular medium, in 
the absence of contact heat conduction through the grain body, the dispersion of both inter- 
phase transfer and effective heat flux is taken into account, as well as the inhomogeneity 
of the temperature field. 

2. Bearing in mind that, as in [8, 9], the dynamics of temperature-field variation 
within an individual particle must be considered, taking account of the temperature relaxa- 
tion and inhomogeneity outside the particle, the same transfer theory as in [7, 16] is used, 
on the basis of the method of ensemble averaging and the concepts of self-consistent field 
theory. According to this theory, the effective heat fluxes in a granular medium and inter- 
phase heat transfer are expressed as integrals, the integrands of which depend on the dis- 
tribution of the mean temperature in a single (trial) particle, it is convenient to intro- 
duce dimensionless coordinates r with the scale a and time Fo with the scale a2/K2 and to 
apply at once Laplace transformation with respect to the time with parameter p. This yields 
the equations 

• eclpT1 = __ __1 • a 2 a vq  + H, - - ~  pc2p% = - - H ,  ( 1 ) 

where 

q (R) = -- -- 

H (6) = 

3p P 

w - -  (z~--  ~1) J vR~* (~l~') dR', 
a 4ha m-R'l<~ 

3p)~2 
ArT* (aiR')  d e ' ,  �9 = e t  1 + pt~, 

4 ~a2 I r - r ' l<~  

(2) 

and the integration is taken over the radius vector R' of the trial particle (here and be- 
low, the functions and their Laplace transforms are denoted by the same symbols). In addi- 
tion, the following formulas may be written for q and H 

~1 ~V~, H -  ~2 pp~,  (3)  q ~ a a u 

w h e r e  ~ a n d  p a r e  unknown f u n c t i o n s  o f  t h e  p a r a m e t e r s  o f  t h e  medium a n d  p ;  t h e  d e p e n d e n c e  
on  p d e t e r m i n e s  t h e  d i s p e r s i o n  o f  t h e  e f f e c t i v e  t h e r m a l  c o n d u c t i v i t y  XI~ a n d  a l s o  t h e  i n t e r -  
p h a s e  h e a t  t r a n s f e r .  

Using Eq. (3), Eq. (i) is written in the form 

s 2 * : A x ,  e ,  1 - - ( l - p ~ ) , ,  * 2 = D ~ ,  

(4) 
s 2 =  • l + p  c ~  --i ~ 

• \ Cl / 

a n d  h e n c e  i t  f o l l o w s ,  i n  p a r t i c u l a r ,  t h a t  t h e  t r a n s f o r m s  o f  t h e  mean t e m p e r a t u r e s  o f  t h e  
p h a s e s  a r e  e x p r e s s e d  i n  t e r m s  o f  t h e  t r a n s f o r m  o f  t h e  mean t e m p e r a t u r e  o f  t h e  medium a s  a 
w h o l e .  

A s s u m i n g ,  f o r  t h e  s a k e  o f  s i m p l i c i t y ,  t h a t  t h e  mean t e m p e r a t u r e s  d e p e n d  on o n l y  a 
s i n g l e  C a r t e s i a n  c o o r d i n a t e  z = r e o s  r  r = R - R '  ( i t  may be  shown t h a t  t h i s  d o e s  n o t  l i m i t  
t h e  g e n e r a l i t y  o f  t h e  t h e o r y ) ,  x ( R )  i s  w r i t t e n  a s  a T a y l o r  e x p a n s i o n  
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(R) = ~(R' + r) = z' + E'z + M'z2 + . . . .  

and t h e n ,  u s i n g  Eq. (4)  and e x p a n s i o n  in  s p h e r i c a l  f u n c t i o n s ,  i t  i s  found  t h a t  

52F2 
x ( R ) = ~ '  1 +  s2r~ ~ P 3 - ~ - E ' r P l + x '  p ~ +  ! (5)  

6 ] 3 "'" '~ 
where Pn = Pn (c~ ~) are Legendre polynomials. Analogous expansions may be written rela- 
tive to the point R, which determines the values of the coefficients in Eq. (5) 

~ ' = x ( R - - r ) = x  1 + P . - - E r P t + ~  3 P~ + .... (6 )  

E' = EPo - -  xsZrP1. 

The continuum method of describing transport processes in a heterogeneous medium is 
only possible, in principle, in the case where the linear scale of the mean fields is much 
greater than the linear scale of the internal structure of the medium. This entails that 
s 2 << i. Since the Laplace-transformation parameter p appears in the definition of s 2 in 
Eq. (4), this requirement in fact imposes a constraint on the degree of nonsteady behavior 
of the processes which may be considered within the framework of continuum theory. 

To determine the field ~*(RIR') appearing in the integrals in Eq. (2), the special 
problem of a trial particle immersed in some hypothetical medium whose thermal conductivity 
depends on the distance to the particle surface must be considered [7, 16]. The character 
of this dependence is determined by the type of packing of the particles; different versions 
for a monodisperse layer of spheres were considered in [17]. Here, considering more realis- 
tic heterogeneous systems, an approximate method of description in which the hypothetical 
medium consists of a homogeneous continuum with the properties of the heterogeneous medium 
as a whole in the region outside a sphere of radius (I + x)a concentric with the trial par- 
ticle and a spherical layer (I + • > r > a inside this sphere in which the properties co- 
incide with those for a continuous phase is used. A model of this type was first proposed 
in [18], in connection with the problem of determining the effective elastic properties of 
composite materials. The effective thermal conductivity of the disperse layer was deter- 
mined within the framework of this approach when X = i in [16, 17]. 

In the given case, the problem of a trial-particle problem takes the following form, 
taking account of the smallness of s 2 

x * p : A ~ * ,  0 < r ~ l ;  Ax"=O,  l < r ~ l + ~ ;  A x ' " = 0 ,  r > l + x ;  

x* : x + ~ " ,  ~2nvx* = LI~nvx+~lnv  x'', r = 1; 
(7) 

x " =  x'",  Xlnv~ = X~nvx'",  r = I + X ;  

~ * < o o ,  r = 0 ;  x ' " - + 0 ,  r -+oo.  

Note that the boundary condition of continuity of the heat flux in this problem dif- 
fers significantly from the conditions specified within the framework of the phenomenolog- 
ical models in which the mean heat flux is expressed as %167~ not only far from the trial 
particle but also in the surface layer [16]. 

At the level of accuracy corresponding to taking account of only the first two terms 
in the expansions in Eqs. (5) and (6), the solution of Eq. (7) is obtained in the form of 
a sum of elements proportional to P0 and Pz. In particular, the following expression may 
be written for ~* 

-i/2 
x* = [~'~oI I (Y) Po + E 'a l l  3 (V) Pl] Y , 

Y "7" 

~ 0 =  ] /P 1 + •  F F = 3  
sh V~ 313 (1 + x) ' P 

3 - V ~  [(21~ 2 -t- 2)(0 - -  1) + 6(50 +4)]/sh V p  
al  = [2D (213 + 1 ) -  2 + 2[}] F + • - -  2F)[D (2~ --1- 1) --}- 2 - -  2[}] ' 

(8)  

(9)  

where 

y = r q / ~ p ,  • D = ( I + x ) 3 .  
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Fig. i. Dependence of the dimensionless 
effective thermal conductivity of the 
system in steady conditions on K when p = 
0.6 for various X (given on the curves); 
the points correspond to the experimental 
data of [20]. 

Integration in Eq. (2) in accordance with Eqs. (8) and (9) gives 

j~-n',<, 3 3~(i 3" X) 

(215 z 3" 2)(D -- 1) 3" 15 (5D 3" 4) ~_}. 
3- 2D(2153, 1 ) - -23 ,  2~3,• 1) 3 , ,2--2  (10) 

4 [ xp(1 3.15%) ] - ' .  
ARt* (RIR')dR'= ap'cF 1 3" F 

m--R'k<1 3 38(1 3-%) 

Comparison of Eqs. (2) and (10) wi th  Eq. (3) g ives  the  t r a n s c e n d e n t a l  equa t ions  

~ = 1 3 , ( •  • F ] - ' 3 ,  
, 315(1 +X) 

(2[ z 3. 2)(D -- 1) 47 ~ (5/). 3. 4) } 
3" 2D(2~3,1)--23,2[-~3,• . '  (11) 

[ • 3.15x) ]-t 
~ = F  13, F 

L 315( 1 3" X) 
for  the  unknowns ~ and ~, which permi ts  c l o su re  of the  theory .  

Thus, Eq. (11) comple te ly  de te rmines  the  r e l a t i o n  in Eq. (4) between the  t ransforms of 
the  mean tempera tures  of  the  phase and the  medium as a whole; the  l a t t e r  may be de termined 
from the  s o l u t i o n  of the  cor responding  boundary problem for  Eq. (4) .  t f  weakly nonsteady 
processes are considered, i.e., sufficiently small p is assumed, approximate relations for 

and ~ in the form of a sum of terms proportional to the powers of p may be obtained from 
Eq. (ii), and an equation for any of the mean temperatures from Eq. (4). Its inversion 
leads at once to an integro-differential nonlocal (in time) equation of the same type as in 
[7-15]. However, in the general case, as noted in [9], it is expedient to solve the prob- 
lem in transforms, with inversion only in the final stage, for which there are well-devel- 
oped numerical methods [19]. 

3. Consider the asymptotic versions of this theory. First of all, in almost-steady 
processes p << i, F -~ I, it follows from Eq. (ii), neglecting terms of order p and above, 
that 

9 (• --  1)[(215 ~ 3. 2)(0 -- 1) 3. ~ (5D 3" 4)1 
p~15s=  lff  2~ [D (2 3, • 3 , 1 - -  x13, D (2 3. • 3. 2 (• --1) ' ~ =  1. (12) 

The second relation simply states the approximate equality of the temperatures of the 
phases in weakly no• processes. The first relation in Eq. (12) determines the effec- 
tive steady thermal conductivity ~, = -Xzis with arbitrary X; when X = 0 and I, this quan- 
tity was calculated in [7, 16]. In the general case, X must be regarded as some semiempir- 
ical parameter which globally characterizes the properties of the particles of a granular 
medium and their packing or, in an even more general case, the structural properties of a 
nongranular heterogeneous material. Even for an ideal layer with identical spherical parti- 
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Fig. 2. Dependence of the dimensionless 
steady effective thermal conductivity on 
P for various < (given on the curves); 
< + ~ (a) and < = 0 (b). 

cles, the value X = 1 following from general theory under a series of assumptions leads to 
values of the effective thermal conductivity that are somewhat too low [16, 17], i.e., in 
this case, it is expedient to choose X on the basis of the results of comparing theory and 
experiment. As an example, comparison with the data of [20] for a granular layer with p = 
0.6 is shown in Fig. 1 (only some reference points reflecting the general trend are shown). 
Hence it follows that X = 0.2. 

The dependence of ~s = %,/%z on p for the limiting situations when < = %2/~z + ~ and 
< = 0 at various X is shown in Fig. 2. These curves may be useful in estimating the effec- 
tive thermal conductivity of broad classes of heterogeneous media, if specific values of X 
are determined from a few experiments. Whereas X is around 0.2 for dense granular media, as 
follows from an analysis of Fig. i, X may easily reach or even exceed unity for loosely pack- 
ed layers of particles of complex, significantly nonspherical, form. Conversely, it may be 
expected that the characteristic values of X in heterogeneous materials of the type of crack- 
ed porous media will be close to zero. 

Terms of first order in Eq. (ii) are now taken into account in Eq. (ii). The first re- 
lation in Eq. (12) fs unchanged here, but the second is replaced by 

V ~ , [ 1 H  • ] " 3 ~ 8 ( 1 + X )  (13) 

In this case, it follows from Eq. (4) that 

3 [ ~  (1 + ~0 (xl _ ~), ~ - : ( ~  - ~ )  = 
(~-1 _ 1) • (1 + ~ z )  

( 1 4 ) 
L (1 + ~ )  J 

+ •215 ~-~8X)3~8 (l ~- Z) .[ C1%1 ~- C2%2 9 ] ' S  

Again n e g l e c t i n g  terms of  o rde r  p2, pe r fo rming  i n v e r s e  Laplace  t r a n s f o r m a t i o n ,  and r e -  
t u r n i n g  to  t h e  d imens iona l  v a r i a b l e s  x and t ,  t he  fo l lowing  equa t ions  a r e  ob ta ined  

Oxi ~ 
~c~ ~ = X , / V q  - -  - - A Z ( . q  - -  "c2), ~ ,  = ~ ,  

Ot 4a z 

(15) 
p c ~ - - - - - - -  A2(xl--x2), A 2 =  129e (1+%) ~8, 

Ol 4a 2 (I + ~X) 

which c o i n c i d e  wi th  t h e  equa t ions  of  he t e rogeneous  t r a n s f e r  th rough t h e  phases of  t he  medium; 
t h e s e  equa t ions  a r e  v e r y  o f t e n  used in p r a c t i c a l  c a l c u l a t i o n s .  The pa ramete r  h was f i r s t  
introduced in [i, 3, 4], where it was assumed to be two. In fact, it is a function both of 
p and X and, through ~s, also of K. Characteristic curves of A as a function of X, i.e., 
in fact, of the structural features of the medium when p = 0.6 and for various K, are shown 
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Fig. 3. Parameter A as a function of X when 
p = 0.6 and < + = (a), K = 0 (b). 

in Fig. 3, from which it is evident that A = 2 may only be regarded as some mean value of 
the true dependences. 

In the absence of any nonphenomenological procedure for deriving Eq. (15), the above 
conclusion is evidently of definite methodological interest. Even more importantly, the 
conditions of applicability of this system, which have previously been repeatedly (and on 
the whole unsuccessfully) discussed, are now clear. 

For small times (p >> i, F ~ 3p-i/2), it follows from Eq. (ii) that (the requirement 
p >> 1 may be consistent with the condition s 2 << i) 

~ l, ~ 0 .  (16 )  

T h i s  c o r r e s p o n d s  t o  h e a t  t r a n s f e r  p r a c t i c a l l y  o n l y  t h r o u g h  t h e  c o n t i n u o u s  p h ase  a t  s m a l l  
t i m e s .  The p a r t i c l e s  s t i l l  a r e  n o t  a b l e  t o  a b s o r b  a p r o n o u n c e d  q u a n t i t y  o f  h e a t  and so 
have  p r a c t i c a l l y  no i n f l u e n c e  on t h e  t r a n s f e r .  Note  t h a t  Eq. ( 1 5 ) f o r m a l l y  g i v e s  t h e  c o r -  
r e c t  asymptote for small times if 4, = ~z is assumed. 

4. To illustrate various relaxational and dispersional effects influencing the char- 
acter of development of the process, the features of the heating of an initially cold gran- 
ular layer from a solid wall with a constant temperature T w is considered, as in [8, 9], 
within the framework of the first boundary problem. The solution of Eq. (4) for the trans- 
form of the mean layer temperature is 

~=(T~/p)exp(--~), 
and the transform of the heat-flux to the layer is 

Q_ ~IT~ I( • t [  1 +  c~--I p~ (17) 
a ( \  • )k q 

As p § 0 (Fo + ~ ) ,  Eq. (17)  t a k e s  t h e  form 

Q -VT' 1+ - i  

The Nusselt number is defined as 

Q _ 1 {~-s [ l@(c~/q--1)PF ]I ~/2" (19 )  
N u - -  W ]/p 1+(c2/c 1 -  1) O 

The N u s s e l t  number i s  d e f i n e d  a n a l o g o u s l y  f o r  t h e  s o l u t i o n  o f  t h e  same p ro b l em  in  [ 9 ] ,  
where  o n l y  t h e  r e l a x a t i o n  p r o c e s s  i n s i d e  t h e  p a r t i c l e s  i s  t a k e n  i n t o  a c c o u n t  

1 [ l+kFt l /2  ' k= c2._.___~p (20)  
N u =  %/p--__l+k cls 

For  c o m p a r i s o n ,  t h e  e x p r e s s i o n  f o r  a homogeneous mass w i t h  t h e r m a l  c o n d u c t i v i t y  4 ,  = 
t l ~ s  i s  a l s o  g i v e n  h e r e  

Nu =p-1/2~ 1/(~Fo) (21)  

as well as the expression for Nu obtained from the solution of Eq. (15) 

I ] *u 1 l + k + k l p  1/2, k 1 = - ,  (22)  
Nu -- -Vp (I + k)(] + kxp) A 2 

where  k i s  d e f i n e d  i n  Eq. ( 2 0 ) .  
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Fig. 4. Dependences Nu(Fo) for p = 0.6; c2/c I = 102; < = 0.i; 
X = 0.07 (a); < = i00; X = 0.2 (b); the dashed curves corre- 
spond to the solution in Eq. (21) for the usual heat-conduction 
equation; curves 1 and 2 to Eqs. (19) and (20), respectively; 
curve 3 to the solution in Eq. (22) of Eq. (15) with A = 2; 
and curve 4 to Eq. (19) but with ~ = ~s, which corresponds to 
taking no account of the dispersion of $ and retaining only one 
term in the expansions in Eqs. (5) and (6). 

The dependences Nu(Fo) obtained from Eqs. (19)-(22) by numerical inversion of the 
Laplace transformation for various 5~and X are compared in Fig. 4 [19]. Analysis of the 
curves leads to the following concl~ions. 

Taking account of the dispersion of the effective thermal conductivity ~i$ leads to 
the appearance of a minimum on the curve of Nu(Fo). This minimum appears if the thermal 
conductivity of the particles exceeds that of the continuous phase (Fig. 4b); it becomes 
more strongly expressed as the ratio ~ = ~2/%1 increases. With increase (decrease) in <, 
the range of times at which relaxational phenomena appear is shifted to larger (smaller) 
Fo. The presence of a minimum on curve i (Fig. 4b) may be interpreted as follows. At small 
times after the onset of the proceNs, heat transfer occurs only through the continuous phase; 
tortuosity effects are unable to appear and the effective thermal conductivity of the medium 
is simply the thermal conductivity of the continuous phase. Then, heat absorption by the 
particles begins, and the drop in the heat flux from the wall stops; the presence of such a 
"shallow" intermediate asymptote was noted in [8]. At large thermal conductivity of the 
particles, this absorption may be very considerable and leads to sharp decrease in tempera- 
ture of the continuous phase (the heat is absorbed by the particles more rapidly than it is 
supplied from the wall), and hence to increase in temperature gradient, which, in turn, re- 
sults in increase in heat flux from the wall. This leads to the appearance of a minimum on 
the curve of Nu(Fo). Subsequently, heat-transfer processes between the disperse and con- 
tinuous phases are completed, their temperatures equalize, and the granular medium behaves 
as a homogeneous medium with %, = ll~s ~ 

The equation obtained in [9] to describe heterogeneous transfer (curve 2 in Fig. 4a, 
b) is only valid at small < (~2 << II), as a consequence of the assumption that the tempera- 
ture field in the continuous phase is homogeneous at scales of the order of the particle 
dimension. This also applies to the result obtained in [12, 13], and was mentioned in [15]. 
Note that this assumption may be valid, for example, for problems of liquid filtration in 
cracked porous media, where the conductivity through the cracks may significantly exceed 
the conductivity through the porous blocks. However, for example, for heat transfer in 
granular media with < > i, for example, this assumption is invalid and, as shown in Fig. 4, 
leads to qualitative disagreement with the solution in Eq. (19). For small K, in a granu- 
lar medium, heating of a large number of particles begins practically at once (as a result 
of fast heat transfer through the continuous phase). Relaxational effects in this case are 
more weakly expressed (Fig. 4a). 

The solution of the simple system in Eq. (15) when K ~ i0 describes the dynamics of 
heat-transfer processes in a granular layer qualitatively correctly on the whole, practically 
coinciding with curve 4 in Fig. 4. At small Fo, it is found to behave much more correctly 
than the solution of the equivalent elliptical equation, which tends rapidly to infinity 
when Fo < i0. This behavior of Eq. (15) is probably due to the presence of correct asymp- 
totes both as Fo ~ ~ and as Fo + 0 in the system. In this respect, the solutions of Eq. 
(15) may evidently be regarded as reasonable approximations in the sense of [21]. 
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Finally, the use of solutions of Eq. (15) may be recommended for practical engineering 
calculations in situations where < S i0 when modeling heat and mass transfer in heterogene- 
ous media. For cases where < > i0, however, the failure to take account of dispersional 
effects leads to qualitatively incorrect description of the processes. In these cases, the 
equations from the present work must be used. 

The above results on modeling heterogeneous transfer for thermal problems are probably 
more methodological in character than a basis for engineering calculations, as a result of 
the small time in which relaxational effects appear. For example, for a granular layer of 
glass balls (radius i mm), the dimensionless time Fo = 10 -2 corresponds to t ~ 10 -4 sec. 
It is difficult to measure such times in experiments, and they are rarely of practical im- 
portance. At the same time, these results may be of great practical value for filtration 
problems in inhomogeneous porous media. Thus, for filtration in a cracked porous medium, 
with a block size of i m and a piezoconductivity of 10 -4 m2/sec, Fo = 10 -2 corresponds to 
t ~ i00 sec, which may be measured experimentally. In a number of cases, the characteris- 
tic times may reach tens of minutes and be of significant practical value, for example, in 
the case of the processes considered in [13]. Note that the inequality <2 << <~, which is 
fundamental to the theory, may easily be satisfied for materials of the type of cracked 
porous media, when the conduction of the porous blocks is much less than that of the sur- 
rounding continuous phase modeling the system of cracks. 

In conclusion, promising lines of development of s theory may be briefly noted. 
Above all, in many situations, conductivity through the body of the disperse-phase parti- 
cles is significant. This may be the case both in heat-transfer problems [22, 23] and in 
the filtration of liquids in cracked porous media [6]. In many mass-transfer processes, 
nonlinear effects associated with the behavior of impurity at the phase interface play an 
important role [i0, 11]. Finally, in a series of problems, account must be taken of phase 
and chemical transformations at this surface, sometimes accompanied by change in particle 
size of the disperse phase [2]. In filtration problems and also in problems of high-tem- 
perature heat transfer in the presence of radiant heat conduction, the nonlinear dependences 
of the permeability or thermal conductivity on the pressure or temperature are also import- 
ant. All these problems of significant practical value may, in principle, be considered on 
the basis of methods analogous to those above. 

NOTATION 

A, parameter in Eq. (15); D = (i + • a, particle radius; c, specific heat per unit 
volume; E, M, coefficients of the expansion; F, function of the parameter p defined in Eq. 
(9); Fo, dimensionless time; H, functional defined in Eq. (i); k I, k2, parameters in Eqs. 
(20) and (22); Nu, Nusselt number; p, Laplace-transformation parameter; Q, heat flux to 
granular layer from wall; q, heat flux in Eq. (i); R, R', r, r, z, dimensionless spatial 
coordinates; s, coefficient defined in Eq. (4); Tw, wall temperature; t, time; W, coeffic- 
ient in Eq. (18); x, dimensional spatial coordinates; y, parameter in Eq. (9); ~i, coef- 
ficients in Eqs. (8) and (9); ~, Z, functions of p introduced in Eq. (3); e, volume frac- 
tion of continuous phase; Ki, thermal diffusivity; K = 12/il; l, thermal conductivity; ~,, 
effective thermal conductivity; p = i - E; Ti, T, mean temperatures of the phases and the 
medium as a whole; T,, temperature inside trial particle; T", ~"', perturbations of mean 
temperature; r polar angle; X, dimensionless thickness of continuous-phase layer around 
trial particle. Indices: i, 2, continuous and disperse phases, respectively; s, steady 
state; a prime denotes quantities calculated for the center of the trial particle~ 
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